On a family of tridiagonal matrices

نویسنده

  • Roland Bacher
چکیده

1: We show that certain integral positive definite symmetric tridiagonal matrices of determinant n are in one to one correspondence with elements of (Z/nZ)∗. We study some properties of this correspondence. In a somewhat unrelated second part we discuss a construction which associates a sequence of integral polytopes to every integral symmetric matrix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Tridiagonal Realization of the Anti-symmetric Gaussian Β-ensemble

Abstract. The Householder reduction of a member of the anti-symmetric Gaussian unitary ensemble gives an anti-symmetric tridiagonal matrix with all independent elements. The random variables permit the introduction of a positive parameter β, and the eigenvalue probability density function of the corresponding random matrices can be computed explicitly, as can the distribution of {qi}, the first...

متن کامل

Fast block diagonalization of k-tridiagonal matrices

In the present paper, we give a fast algorithm for block diagonalization of k-tridiagonal matrices. The block diagonalization provides us with some useful results: e.g., another derivation of a very recent result on generalized k-Fibonacci numbers in [M.E.A. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456– 4461]; efficient (symbolic) algorithm for...

متن کامل

Inverse Tridiagonal

In this paper, we consider matrices whose inverses are tridiagonal Z{matrices. Based on a characterization of symmetric tridiagonal matrices by Gantmacher and Krein, we show that a matrix is the inverse of a tridiagonal Z{matrix if and only if, up to a positive scaling of the rows, it is the Hadamard product of a so called weak type D matrix and a ipped weak type D matrix whose parameters satis...

متن کامل

Spectral Distributions and Isospectral Sets of Tridiagonal Matrices

We analyze the correspondence between finite sequences of finitely supported probability distributions and finite-dimensional, real, symmetric, tridiagonal matrices. In particular, we give an intrinsic description of the topology induced on sequences of distributions by the usual Euclidean structure on matrices. Our results provide an analytical tool with which to study ensembles of tridiagonal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008